Trulli

2024

124.Leitep, R.V., Amaral, C., Neigh, C.S.R., Cosenza, D.N., Klauberg, C., Hudak, A.T., Aragão, L., Morton, D.C., Coffield, S., McCabe, T. and Silva, C.A. (2024), Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management. Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.416

123.Montagnoli, A., Hudak, A. T., Raumonen, P., Lasserre, B., Terzaghi, M., Silva, C. A., Bright, B. C., Vierling, L. A., Vasconcellos, B. N. de, Chiatante, D., & Dumroese, R. K. (2024). Terrestrial laser scanning and low magnetic field digitization yield similar architectural coarse root traits for 32-year-old Pinus ponderosa trees. Plant Methods, 20, 102. https://doi.org/10.1186/s13007-024-01229-9

122.Cardil, A., Rodrigues, M., Barbero, R. Ramirez, J., Stoof, C., Silva, C., Mohan, M. Reply to: Satellite artifacts modulate FireCCILT11 global burned area. Nature Communication 15, 2080 (2024). https://doi.org/10.1038/s41467-024-46169-z

121.Viedma, O., Silva, C. A., Moreno, J. M., & Hudak, A. T. (2024). LadderFuelsR: A new automated tool for vertical fuel continuity analysis and crown base height detection using light detection and ranging. Methods in Ecology and Evolution, August 2024, https://doi.org/10.1111/2041-210X.14427

120. Blanton, A., Mohan, M., Galgamuwa, G.A.P., Watt, M.S., Montenegro, J.F., Mills, F., Carlsen, S.C.H., Valasquez-Camacho, L., Bomfim, B., Pons, J., Broadbent, E.N., Kaur, A., Direk, S., de-Miguel, S., Ortega, M., Abdullah, M., Rondon, M., Wan Mohd Jaafar, W.S., Silva, C.A., Cardil, A., Doaemo, W., Ewane, B.E. (2024). The status of forest carbon markets in Latin America. Journal of Environmental Management, 352, 119921. https://doi.org/10.1016/j.jenvman.2023.119921

2023

119. Silva Junior, C. H. L., Alencar, A., Silva, C., Pessôa, A. C. M., Carvalho, N. S., Reis, J. B. C., Aragão, L. E. O. C. (2023). "Tropical Forest Degradation Remains an Overlooked Driver of Global Warming. https://ipam.org.br/bibliotecas/tropical-forest-degradation-remains-an-overlooked-driver-of-global-warming/

118. Merrick, T.; Bennartz, R.; Jorge, M.L.S.P.; Merrick, C.; Bohlman, S.A.; Silva, C.A.; Pau, S. Comparing Phenology of a Temperate Deciduous Forest Captured by Solar-Induced Fluorescence and Vegetation Indices. Remote Sens. 2023, 15, 5101. https://doi.org/10.3390/rs15215101

117. Atkins, J. W., Costanza, J., Dahlin, K. M., Dannenberg, M. P., Elmore, A. J., Fitzpatrick, M. C., Hakkenberg, C. R., Hardiman, B. S., Kamoske, A., LaRue, E. A., Silva, C. A., Stovall, A. E. L., & Tielens, E. K. (2023). Scale dependency of lidar-derived forest structural diver-sity. Methods in Ecology and Evolution, 14, 708– 723. https://doi.org/10.1111/2041-210X.14040

116. Haneda, L.E., Brancalion, P.H., Molin, P.G., Ferreira, M.P., Silva, C.A., de Almeida, C.T., Resende, A.F., Santoro, G.B., Rosa, M., Guillemot, J., Le Maire, G., 2023. Forest landscape restoration: SPECTRAL behavior and diversity of tropical tree cover classes. Remote Sens. Appl.: Society and Environment. https://doi.org/10.1016/j.rsase.2022.100882

115. Ewane, E. B., Bajaj, S., Velasquez-Camacho, L., Srinivasan, S., Maeng, J., Singla, A., Luber, A., de-Miguel, S., Richardson, G., Broadbent, E.B., Cardil, A., Jaafar, W. S. W. M., Abdullah, M., Corte, A. P. D., Silva, C.A., Doaemo, W., Mohan, M. (2023). Influence of urban forests on residential property values: A systematic review of remote sensing-based studies, Heliyon,V. 9. https://doi.org/10.1016/j.heliyon.2023.e20408

114. Hooman, L., Valbuena, R., Silva, C.A. Towards Complex Applications of Active Remote Sensing for Ecology and Conservation. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.14154

113.Abbasi, A., Tang, X., Harris, N.L., Goldman, E.D., Gamarra, J.G.P., Herold,M., Kim, H.S., Luo, W., Silva, C.A., Tchebakova, N.M., Mitra,A., Finegold, Y., Jahanshahi, M.R, Alvarez, C.I., Kim, T. K., Ryu, D., Liang, J., Artificial-intelligence augmented spatial database of planted trees (A-SDPT) in East Asia. Scientific Data. https://doi.org/10.1038/s41597-023-02383-w

112.Heinrichg, V. H. A., Vancutsem, C., Dalagnol, R., Rosan, T. M., Fawcett, D., Silva-Junior, C. H. L., Cassol, H. L. G., Achard, F., Jucker, T., Silva, C. A., House, Jo., Sitch, S., Hales, T., Aragão, Luiz E. O. C. (2023). The carbon sink of secondary and degraded humid tropical forests. Nature. 615, 436–442. . https://doi.org/10.1038/s41586-022-05679-w

111.Ewane, E.B.; Mohan, M.; Bajaj, S.; Galgamuwa, G.A.P.; Watt, M.S.; Arachchige, P.P.; Hudak, A.T.; Richardson, G.; Ajithkumar, N.; Srinivasan, S.; Corte, A.P.D.; Johnson, D.J.; Broadbent, E.N.; de-Miguel, S.; Bruscolini, M.; Young, D.J.N.; Shafai, S.; Abdullah, M.M.; Jaafar, W.S.W.M.; Doaemo, W.; Silva, C.A.; Cardil, A. Climate-Change-Driven Droughts and Tree Mortality: Assessing the Potential of UAV-Derived Early Warning Metrics. Remote Sens. 2023, 15, 2627. . https://doi.org/10.3390/rs15102627

110.Rodes-Blanco, M., Benito, P.R., Silva, C.A., García, M (2023). Canopy Gap patterns in Mediterranean forests: a spatio-temporal characterization using airborne LiDAR data. Landsc Ecol. https://doi.org/10.1007/s10980-023-01663-5

109.Sánchez-Lópezp, N., Hudak, A.T., Boschetti, L., Silva, C.A., Robertson, K., Loudermilk, E.L., Bright, B.C., Callaham, M.A., Taylor, M.K., (2023). A spatially explicit model of tree leaf litter accumulation in fire maintained longleaf pine forests of the southeastern USA. Ecological Modelling. Vol. 481. . https://doi.org/10.1016/j.ecolmodel.2023.110369

108.Scheeresg, J.ç, Jong, J.J.ç Brede, B., Brancalion, P., Broadbent, E. ; Zambrano, A. M.; Gorgens, E. B.; Silva, C. A.; Valbuena, R.; Molin, P.; Stark, S.; Rodrigues, R.; Sandoro, G.; Resende, A.; Almeida, C. T.; Almeida, D. R. A (2023). Distinguishing forest types in restored tropical landscapes with UAV-borne LiDAR. Remote Sensing of Environment. Vol 29, 15. https://doi.org/10.1016/j.rse.2023.113533

107.Cardil, A., Rodrigues, M., Tapia, M., Barbero, R., Ramírez, J., Stoof, C.R., Silva, C.A., Mohan M., de-Miguel, S. Climate teleconnections modulate global burned area. Nature Communication 14, 427 (2023). https://doi.org/10.1038/s41467-023-36052-8

106.Klauberg, C.; Vogel, J.; Dalagnol, R.; Ferreira, M.P.; Hamamura, C.; Broadbent, E.; Silva, C.A. Post-Hurricane Damage Severity Classification at the Individual Tree Level Using Terrestrial Laser Scanning and Deep Learning. Remote Sens. 2023, 15, 1165. https://doi.org/10.3390/rs15041165

105.RochaG, K.D.; Silva, C.A.; Cosenza, D.N.; Mohan, M.; Klauberg, C.; Schlickmann, M.B.; Xia, J.; Leite, R.V.; Almeida, D.R.A.d.; Atkins, J.W.; Cardil, A.; Rowell, E.; Parsons, R.; Sánchez-López, N.; Prichard, S.J.; Hudak, A.T. (2023). Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus palustris Mill.) Forest Ecosystem. Remote Sens. 15, 1002. https://doi.org/10.3390/rs15041002

104.Cardil, A., Monedereo, S., Selegue, P., De Miguel, S., Marshall, g., Chavez, T., Silva, C.A., Ramirez, J. Performance of operational fire spread models in California’ has been successfully submitted online and will be given full consideration for publication in International Journal of Wildland Fire. https://doi.org/10.1071/WF22128

103.Pinagép, E., Longo, M., Csillik, O., Huete, A., David, Silva, C., Keller, M. Surface energy dynamics and canopy structural properties in intact and disturbed forests in the Southern Amazon. Journal of Geophysical Research. https://doi.org/10.1029/2023JG007465

102.Crockettp, E. T.H., Atkins, J. W., Guo, Q., Sun, G., Potter, K. M., Ollinger, S., Silva, C.A., Tang, H.A., Woodall, C. W., Holgerson, J., Xiao, J., Structural and species diversity are associated with aboveground carbon storage in forests across the United States: evidence from GEDI and forest inventory data. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2023.113703

2022

101. Liang, L. et al. Co-limitation toward lower latitudes shapes global forest diversity gradients. Nature Ecology and Evolution. 2022. https://doi.org/10.1038/s41559-022-01831-x

100. Silveira, A. B., Carvalho, S. P. C., Nicoletti, M. N., Silca, C. A., Drescher, R.,Carvalho, M. L. C., Madi, J.P.S., Topanotti, L. R., Zeviani, W. M.,Andrade, V. C. L 2022.Impact of plot size on tropical forest structure and diversity estimation. Revista de Biología Tropical. Vol. 70: 437-449 https://doi.org/10.15517/rev.biol.trop.2022.48640

99. Silva, C.A.; Hudak, A.T; Vierling, L.A.; Valbuena, R.; Cardil, A.; Mohan, M.; Almeida, D. A.; Broadbent,E.N.; Zambrano,A. M. A.; Wilkinson, B., Sharma,A., Drake,J. B.; Medley,P. B., Vogel, J. G.; Prata,G. A.; Atkins, J.; Hamamura,C.; Klauberg, C. 2021. TreeTop: A Shiny-based Application for Extracting Forest Information from LiDAR data for Ecologists and Conservationists. Methods in Ecology and Evolution. in press

98. Valle; Silva, C.,; Longo, M.; Silverio, D.V.; Maracahipes, L.; Brando, P. Mapping forest degradation using the Latent Dirichlet Allocation model applied to airborne LiDAR data: a case study on the effect of forest fragmentation and fire in the Amazon region. Methods in Ecology and Evolution. 2021, in review. 2022. in press.

97. Stitt, J.M.; Hudak, A.T.; Silva, C.A.; Vierling, L.A.; Vierling, K.T. Evaluating the Use of Lidar to Discern Snag Characteristics Important for Wildlife. Remote Sens. 2022, 14, 72. https://doi.org/10.3390/rs14030720

96. Pinagé, E. R., Bell, D., Longo, M., Gao, S., Keller, M., Silva, C.A., Köhler, P., Frankenberg, C., Huet, A. Forest structure and photosynthesis across intact and degraded forests in the Amazon. Remote Sensing of Environment. In review.

95. Duncanson, L.; Kellner, J. R. et. al. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission,Remote Sensing of Environment, Volume 270,2022,112845 https://doi.org/10.1016/j.rse.2021.112845.

94. Atkins, Jeff W.; Stovall, Atticus E.L.; Alberto Silva, Carlos. 2022. Open-Source tools in R for forestry and forest ecology. Forest Ecology and Management. 503(6): 119813. https://doi.org/10.1016/j.foreco.2021.119813

93. Leite, R. V., Silva, C.A., Amaral, C. H., Liesenberg, V., Almeida, D. R. A., Midhun, M. et al. Large scale multi-layer fuel load characterization in tropical savanna using GEDI spaceborne lidar data. Remote Sensing of Environment.268, Jan 2022, 112764. https://doi.org/10.1016/j.rse.2021.112764

92.Corte, A.P.D.; da Cunha Neto, E.M.; Rex, F.E.; Souza, D.; Behling, A.; Mohan, M.; Sanquetta, M.N.I.; Silva, C.A.; Klauberg, C.; Sanquetta, C.R.; Veras, H.F.P.; de Almeida, D.R.A.; Prata, G.; Zambrano, A.M.A.; Trautenmüller, J.W.; de Moraes, A.; Karasinski, M.A.; Broadbent, E.N. High-Density UAV-LiDAR in an Integrated Crop-Livestock-Forest System: Sampling Forest Inventory or Forest Inventory Based on Individual Tree Detection (ITD). Drones 2022, 6, 48. https://doi.org/10.3390/drones6020048

91.Stoddart, J.; de Almeida, D.R.A.; Silva, C.A.; Görgens, E.B.; Keller, M.; Valbuena, R. A Conceptual Model for Detecting Small-Scale Forest Disturbances Based on Ecosystem Morphological Traits. Remote Sens. 2022, 14, 933. https://doi.org/10.3390/rs14040933

90.Dalla Corte, A.P.; de Vasconcellos, B.N.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Klauberg, C.; de Almeida, D.R.A.; Zambrano, A.M.A.; Trautenmüller, J.W.; Leite, R.V.; do Amaral, C.H.; Veras, H.F.P.; Rocha, K.d.S.; de Moraes, A.; Karasinski, M.A.; Sanquetta, M.N.I.; Broadbent, E.N. Applying High-Resolution UAV-LiDAR and Quantitative Structure Modelling for Estimating Tree Attributes in a Crop-Livestock-Forest System. Land 2022, 11, 507. https://doi.org/10.3390/land11040507

2021

89. Santos, L. H. O., Madi, J. P. S., Díaz, L. M. G. R., Ramirez, G. M., Souza, É. C., Nunes, G. M., Corte, A. P. D., Carvalho, M. P. L. C., Silva, C. A., & Carvalho, S. P. C. (2021). Relationship between spectral variables with RapidEye images and dendrometric variables in teak plantations using principal component analysis. Scientia Forestalis, 49(132), e3655. https://doi.org/10.18671/scifor.v49n132.09

88. Russell, M.; Eitel, J.U.H.; Link, T.E.; Silva, C.A. Important Airborne Lidar Metrics of Canopy Structure for Estimating Snow Interception. Remote Sens. 2021, 1, 4188. https://doi.org/10.3390/rs13204188

87. Silva Junior, C.H.L.; Carvalho, N.S.; Pessôa, A.C.M.; Reis, J.; Pontes-Lopes, A.; Doblas, J.; Heinrich, V.; Campanharo, W.; Alencar, A.; Silva, C.; Lapola, D.; Armenteras, D.; Matricardi, E. A. T.; Berenguer, E.; Cassol, H.; Numata, I.; House, J.; Ferreira, J.; Barlow; J.; Gatti, L.; Brando, P.; Fearnside, P.; Saatchi, S.; Silva, S.; Sitch, S.; Aguiar, A.P.; Silva, C. A.; Vancutsem, C.; Achard, F.; Beuchle, R.; Shimabukuro; Y.; Anderson, L.; Aragão, L, E. O. C. Amazonian forest degradation must be incorporated into the COP26 agenda Integrating . Nature Geoscience. 14, 634–635 (2021). https://doi.org/10.1038/s41561-021-00823-z

86. Stitt, J. M.; Hudak, A. T.; Silva, C.A.; Vierling, L.; Vierling, K. Characterizing individual tree-level snags using airborne lidar-derived forest canopy gaps within closed-canopy conifer forests. Methods in Ecology and Evolution. 2021;00:1–12. https://doi.org/10.1111/2041-210X.13752

85. Faria, B. L., Staal, A., Carlos A. Silva, C. A., Martin, P.A., Panday, P.K., Dantas, V. Climate change and deforestation increase the vulnerability of Amazonian forests to post-fire grass invasion. Global Ecology and Biogeography. 00:1–14. https://doi.org/10.1111/geb.13388

84. d’Oliveira, M. V. N., Figueiredo, E. O., Almeida; D. R. A., Oliveira; L. C., Silva, C. A., Nelson4, B. W., Cunha, R. M., Papa, D. A., Stark, C. C., Valbuena, R. Impacts of selective logging on Amazon forest canopy structure and biomass with a cost-effective LiDAR and photogrammetric survey sequence. Forest Ecology and Management. V 500, 15 Nov 2021, 119648. https://doi.org/10.1016/j.foreco.2021.119648

83. Cardil, A., Monedero, S., Schag, G., de-Miguel, s., Tapia, M., Stoof, C., Silva, c.A., Mohan, M., Cardil, A., Ramirez, J. Fire behavior modeling for operational decision-making. Current Opinion in Environmental Science & Health. 2021, 23, 100291l https://doi.org/10.1016/j.coesh.2021.100291

82. Dorado-Roda, I.; Pascual, A.; Godinho, S.; Silva, C.A.; Botequim, B.; Rodríguez-Gonzálvez, P.; González-Ferreiro, E.; Guerra-Hernández, J. Assessing the Accuracy of GEDI Data for Canopy Height and Aboveground Biomass Estimates in Mediterranean Forests. Remote Sens. 2021, 13, 2279. https://doi.org/10.3390/rs13122279

81. Almeida, D. R. A.,Broadbent, E. N., Ferreira, M.P., Meli, P., Zambrano, A. M. A., Gorgens, E. B., Resende, F. R., Silva, T. S. F., Almeida, C. T., Amaral8, C. H., Corte, A. P. D.,Silva, C. A., et al. Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment. 2021, 264, 112582. https://doi.org/10.1016/j.rse.2021.112582

80. Fatoyinbo, L., Armston, J., Simard, M., Saatchi, S., Denbina, M., Lavalle, M., Hofton, M., Tang, H., Marselis, S., Pinto, N., Hancock, S., Hawkins, B., Duncanson, L., Blair, B., Hansen, C., Lou, Y., Dubayah, R., Hensley, S., Silva, C.A., Poulsen, J,. R., Labrière, N., Barbier, N., Jeffery, K., Kenfack, D., Herve M., Bissengou, P., Alfonso A., Moussavou, G., White, L., Lewis, S., Hibbard, K.The NASA AfriSAR Campaign: Airborne SAR and Lidar Measurements of Tropical Forest Structure and Biomass in Support of Future Space Missions. Remote Sensing of Environment. 2021,264, 112533. https://doi.org/10.1016/j.rse.2021.112533

79. Silva, C.A., Duncansona, L., Hancockb, S., Neuenshwanderc, A., Thomasd, N., Hofton, M., Fatoyinboa, L., Simardd, M., Armston, J., Dubayah, R. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of Environment. 2021. v253. https://doi.org/10.1016/j.rse.2020.112234

78. De Faria, B.L.; Marano, G.; Piponiot, C.; Silva, C.A.; Dantas, V.d.L.; Rattis, L.; Rech, A.R.; Collalti, A. Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events. Forests 2021, 12, 8. https://doi.org/10.3390/f12010008

77. Cardil, A.; de-Miguel, S., Silva, C.A; Reich, P. B., Calkin, D.; Brancalion, P. H. S. 9; et al. Recent deforestation drove the spike in Amazonian fires. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abcac7

76. Costa, M., Silva, C. A.; Broadbent, E. N. et al. 2021. Beyond trees: mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data. Forest Ecology and Management. v. 491: https://doi.org/10.1016/j.foreco.2021.119155

2020

75.Silva Junior, C., Aragão, L., Anderson, L., Fonseca, M., Shimabukuro, Y., Krug, T., Vancutsem, C., Frederic, A., Beuchle, R., Saatchi, S., Silva, I., Silva, C.A., Maeda, E., Longo, M., Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances. 2020. Vol. 6, no. 40. https://doi.org/10.1126/sciadv.aaz8360

74. Valbuen, R., O’Connor, B., Zellweger, F., Simonson, W., Coops, N.C., Morsdorf, F., Vihervaara P., Maltamo, M., Danks, F., Chirici, G., Silva, C. A., Almeida, D., Coomes DA. Standardizing Ecosystem Morphological Traits from 3D Information Sources. Trends in Ecology & Evolution. 2020. https://doi.org/10.1016/j.tree.2020.03.006

73. Duncanson, L., Neuenschwander, A., Hancock, S., Thomas, N., Fatoyinbo, T., Simard, M., Luthcke, S., Silva, C. A., Armston, J., Hofton, M., Dubayah, R. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment. 2020. https://doi.org/10.1016/j.rse.2020.111779

72. Almeida, D. A.; Almeyda Z. A.; Broadbent, E. N.; Wendt, A. L.; Foster, P. ; Wilkinson, B. E. ; Salk, C.; Papa, D.; Stark, S.; Valbuena, R.; Gorgens, E.; Silva, C.; Brancalion, P.; Fagan, M.; Meli, P.; Chazdon, R. Detecting successional changes in tropical forest structure using GatorEye drone-borne lidar. Biotropica, v. 1, p. 1, 2020. https://doi.org/10.1111/btp.12814

71.Qu, Y.; Shaker, A.; Korhonen, L.; Silva, C.A.; Jia, K.; Tian, L.; Song, J. Direct Estimation of Forest Leaf Area Index based on Spectrally Corrected Airborne LiDAR Pulse Penetration Ratio. Remote Sens. 2020, 12, 217. https://doi.org/10.3390/rs12020217

70. Saluma, R.B, Filho, P W., Simard, M., Silva, C.A et al. Improving Mangrove Aboveground Biomass Estimates Using lidar. Estuarine, Coastal and Shelf Science. 2020. https://doi.org/10.1016/j.ecss.2020.106585

69.A.; Cunha Neto, E.M.; Veras, H.F.P.; Moraes, A.; Klauberg, C.; Mohan, M.; Cardil, A.; Broadbent, E.N. Measuring Individual Tree Diameter and Height Using GatorEye High-Density UAV-Lidar in an Integrated Crop-Livestock-Forest System. Remote Sens. 2020, 12, 863. https://doi.org/10.3390/rs12050863

68. Silva, V.S.; Silva, C.A.; Mohan, M.; Cardil, A.; Rex, F.E.; Loureiro, G.H.; Almeida, D.R.A.; Broadbent, E.N.; Gorgens, E.B.; Dalla Corte, A.P.; Silva, E.A.; Valbuena, R.; Klauberg, C. Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus spp. Forest Plantations Using Field and LiDAR Data. Remote Sens. 2020, 12, 1438. https://doi.org/10.3390/rs12091438

67. Nicoletti, Marcos Felipe ; Carvalho, Samuel De Pádua Chaves E ; Machado, Sebastião Do Amaral; Costa, Valdeci José ; Silva, Carlos Alberto ; Topanotti, Larissa Regina . Bivariate and generalized models for taper stem representation and assortments production of loblolly pine (Pinus taeda L.). Journal of Environmental Management, v. 270, p. 110865, 2020. https://doi.org/10.1016/j.jenvman.2020.110865

66. D’Oliveira, M V. N. ; Broadbent, E. N. ; Oliveira, Luis C. ; Silva, C., et al.. Aboveground Biomass Estimation in Amazonian Tropical Forests: a Comparison of Aircraft- and GatorEye UAV-borne LiDAR Data in the Chico Mendes Extractive Reserve in Acre, Brazil. Remote Sensing, v. 12, p. 1754, 2020. https://doi.org/10.3390/rs12111754

65. Marshak, C. ; Simard, M,; Duncanson, L.; Silva, C. et al. Regional Tropical Aboveground Biomass Mapping with L-Band Repeat-Pass Interferometric Radar, Sparse Lidar, and Multiscale Superpixels. Remote Sensing, v. 12, p. 2048, 2020. https://doi.org/10.3390/rs12122048

64. Rex, F., Silva, C.A., Corte, A.P., Klauberg, C., Mohan, M., Cardil, A., Hudak, A. Comparison of Statistical Modelling Approaches for Estimating Tropical Forest Aboveground Biomass Stock and Reporting Their Changes in Low-Intensity Logging Areas Using Multi-Temporal LiDAR Data. Remote Sensing. 2020 https://doi.org/10.3390/rs12091498

63. Leite, R.V.; Silva, C.A.; Mohan, M.; Cardil, A.; Almeida, D.R.A.; Carvalho, S.P.C.; Jaafar, W.S.W.M.; Guerra-Hernández, J.; Weiskittel, A.; Hudak, A.T.; Broadbent, E.N.; Prata, G.; Valbuena, R.; Leite, H.G.; Taquetti, M.F.; Soares, A.A.V.; Scolforo, H.F.; Amaral, C.H.; Dalla Corte, A.P.; Klauberg, C. Individual Tree Attribute Estimation and Uniformity Assessment in Fast-Growing Eucalyptus spp. Forest Plantations Using Lidar and Linear Mixed-Effects Models. Remote Sens. 2020, 12, 3599. https://doi.org/10.3390/rs12213599

62. Silva Junior, C. H. L.; Heinrich, V. H. A. ; Freire, A. T. G.; Broggio, I. S. ; Rosan, T. M.; Doblas, J.; Anderson, L. O. ; Rousseau, G. X.; Shimabukuro, Y. E. ; Silva, C. A. ; House, J. I. ; Aragão, L. E. O. C. Benchmark maps of 33 years of secondary forest age for Brazil. Scientific Data, v. 7, p. 1, 2020. https://doi.org/10.6084/m9.figshare.12622025

61. Brancalion, P. H.S. ; Broadbent, E. N.; De-Miguel, S.; Cardil, A.; Rosa, M. R.; Almeida, C. T. ; Almeida, D. R.A. ; Chakravarty, S.; Zhou, M.; Gamarra, J. G.P. ; Liang, J.; Crouzeilles, R.; Hérault, B.; Aragão, L. E.O.C. ; Silva, C. A.; Almeyda-Zambrano, A. M. Emerging threats linking tropical deforestation and the COVID-19 pandemic. Perspectives in Ecology and Conservation, v. 1, p. 1, 2020. https://doi.org/10.1016/j.pecon.2020.09.006

60. Rex, F. E. ; Corte, A. P. D. ; Silva, C. A. ; Machado, S. A. ; Sanquetta, C. R. . Dynamics of Above-Ground Biomass in the Brazilian Amazon Using LiDAR Data. Anuário Do Instituto De Geociências (Ufrj. Impresso), V. 43, P. 228-238, 2020. https://doi.org/10.11137/2020_1_228_238

59. Corte, A. P. D.; Souza, D. V.; Rex, F. Ed.; Sanquetta, C. R. ; Mohan, M.; Silva, C. A.; Zambrano, A. M. A.; Prata, G.; Almeida, D. R.; Trautenmüller, J. W.; Klauberg, C.; De Moraes, A.; Sanquetta, M. N. ; Wilkinson, B.; Broadbent, E. N.. Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes. Computers and Electronics In Agriculture, v. 179, p. 105815, 2020. https://doi.org/10.1016/j.compag.2020.105815

58. Cardil, A.; Rodrigues, M.; Ramirez, J.; De-Miguel, S.; Silva, C. A.; Mariani, M.; Ascoli, D. Coupled effects of climate teleconnections on drought, Santa Ana winds and wildfires in southern California. Science Of The Total Environment, v. 1, p. 142788, 2020. https://doi.org/10.1016/j.scitotenv.2020.142788

57. Cardil, A.; de-Miguel, S., Silva, C.A; Reich, P. B., Calkin, D.; Brancalion, P. H. S. 9; et al. Recent deforestation drove the spike in Amazonian fires. Environ. Res. Lett. 2020. https://iopscience.iop.org/article/10.1088/1748-9326/abcac7

56. Wan Mohd Jaafar, Wan S.; Said, Nor F.S.; Abdul Maulud, Khairul N.; Uning, Royston; Latif, Mohd T.; Muhmad Kamarulzaman, Aisyah M.; Mohan, Midhun; Pradhan, Biswajeet; Saad, Siti N.M.; Broadbent, Eben N.; Cardil, Adrián; Silva, Carlos A.; Takriff, Mohd S. 2020. Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests 11, no. 12: 1285. https://doi.org/10.3390/f11121285

55. Prata, Gabriel A.; Broadbent, Eben N.; de Almeida, Danilo R.A.; St. Peter, Joseph; Drake, Jason; Medley, Paul; Corte, Ana P.D.; Vogel, Jason; Sharma, Ajay; Silva, Carlos A.; Zambrano, Angelica M.A.; Valbuena, Ruben; Wilkinson, Ben. 2020. Single-Pass UAV-Borne GatorEye LiDAR Sampling as a Rapid Assessment Method for Surveying Forest Structure. Remote Sens. 12, no. 24: 4111. https://doi.org/10.3390/rs12244111

2019

54. Gasparini, K. A., Silva Junior, C, Shimabukuro, Y., Silva, C. A., et al. Determining a Threshold to Delimit the Amazonian 3 Forests from Tree Canopy Cover 2000 Data. Sensors. 2019 https://doi.org/10.3390/s19225020

53. Silva, C.A., Pinagé,E., Mohan, M., Valbuena, R., Almeida, D., Broadbent,E., Jaafar, W., Papa, D., Cardil, A., Klauberg, C. ForestGapR: An R Package for Airborne Laser Scanning-derived Tropical Forest Gaps Analysis. Methods in Ecology and Evolution. 2019. https://doi.org/10.1111/2041-210X.13211

52. Klauberg, C., Hudak, A., Silva, C.A., Lewis, S., Robichaud, P., Jain, T. Characterizing fire effects on conifers at tree level from airborne laser scanning and high-resolution, multispectral satellite data. Ecological Modeling. 2019. https://doi.org/10.1016/j.ecolmodel.2019.108820

51. Eitel, J. ; Maguire, A. ; Boelman, N. ; Vierling, L. A. ; Griffin, K. ; Jensen, J. ; Magney, T. ; Mahoney, P. ; Meddens, A. ; Silva, C. A. ; Sonnentag, O. Proximal remote sensing of tree physiology at northern treeline: Do late-season changes in the photochemical reflectance index (PRI) respond to climate or photoperiod?. Remote Sensing of Environment, v. 221, p. 340-350, 2019. https://doi.org/10.1016/j.rse.2018.11.022

50. Ramirez, J., Monedero, S., Silva C.A., Cardil, A. Stochastic decision trigger modelling to assess the probability of wildland fire impact. Science of the Total Environment. 2019. https://doi.org/10.1016/j.scitotenv.2019.07.311

49. Cardil, A., Vega-García, C., Ascoli D., Molina-Terrén DM., Silva C.A., Rodrigues, M. How does drought impact burned area in Mediterranean vegetation communities? Science of the Total Environment. 2019. https://doi.org/10.1016/j.scitotenv.2019.133603

48. Mohan, M., Mendonça, B., Silva, C.A., Klauberg, C., Ribeiro, R., Araújo, E., Monte, M., Cardil, A. Optimizing Individual Tree Detection Accuracy and Measuring Forest Uniformity in Coconut (Cocos nucifera L.) Plantations using Airborne Laser Scanning. Ecological Modeling. 2019. https://doi.org/10.1016/j.ecolmodel.2019.108736

47. Almeida, D., Stark, S. C., Schietti, J. Camargo, J. L. C., Amazonas, N. T., Gorgens, E. B., Rosa, D. M.Smith, M. N., Valbuena, R, Saleska, S., Andrade, A., Mesquita, R., Laurance, S. G., Laurance, W. F. h, Lovejoy, T. E d, Broadbent, E., Shimabukuro, Y. E., Parker, G. G., Lefsky, M., Silva, C. A., Brancalion, P. H. Persistent effects of fragmentation on tropical rainforest canopy structure after years of isolation. Ecological Applications. 2019. https://doi.org/10.1002/eap.1952

46. Valbuena, R. Hernando, A., Manzaner, J., Görgen, E., Almeida, D., Silva, C.A., García-Abri, A. Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?. European Journal of Remote Sensing. 2019. https://doi.org/10.1080/22797254.2019.1605624

45. Almeida, D., Zambrano, A., Wilkinson, B., Silva, C. A., Papa, D., Broadbent, E., Gorgens, E., Ferreira, M., Meli, P., Brancalion, P., Chazdon, R., Valbuena, R., Stark, S. Monitoring the structure of forest restoration plantations with a drone-lidar system. International Journal of Applied Earth Observations and Geoinformation. 2019. https://doi.org/10.1016/j.jag.2019.03.014

44. Burattoa, D.A ; Juniora, R ; Timofeiczyk, R. ; Silva, J.C.G.L. ; Fregaa, J.R. ; Wiechetecke, M.S.S.A.; Silva, C. A. Use of Artificial Neural Networks and Arima to Forecasting Consumption Sawnwood of Pinus sp. in Brazil. International Forestry Review, v. 21, p. 51-61, 2019 https://doi.org/10.1505/146554819825863735

43. Cardil, A.; Otsu, K. ; Pla, M. ; Silva, C. A. ; Brotons, L. Quantifying pine processionary moth defoliation in a pine-oak mixed forest using unmanned aerial systems and multispectral imagery. PlosOne, 2019 https://doi.org/10.1371/journal.pone.0213027

42. Cardil, A.; Ramirez, J. ; Monedero, S. ; Silva, C. A. Assessing and reinitializing wildland fire simulations through satellite active fire data. Journal of Environmental Management, v. 231, p. 996-1003, 2019. https://doi.org/10.1016/j.jenvman.2018.10.115

41. Molina-Terren, D. M. ; Xanthopoulos, G. ; Diakakis, M. ; Ribeiro, L. ; Caballero, D. ; Delogu, G. M. ; Viegas, D. X. ; Silva, C. A. ; Cardil, A. Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). International Journal of Wildland Fire, v. 1, p. 1, 2019. https://doi.org/10.1071/WF18004

40. Almeida, D. R. A. ; Stark, S. C. ; Shao, G. ; Schietti, J. ; Nelson, B. W. ; Silva, C.A ; Gorgens, E. ; Valbuena, R. ; Papa, D. A. ; Brancalion, P. H. S. Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling. Remote Sensing, v. 11, p. 1, 2019. https://doi.org/10.3390/rs11010092

39. Cardil, A.; Monedero, S. ; Silva, C. A. ; Ramirez, J. Adjusting the rate of spread of fire simulations in real-time. Ecological Modelling, v. 395, p. 39-44, 2019. https://doi.org/10.1016/j.ecolmodel.2019.01.017

38. Almeida, D. R. A. ; Stark, S. C. ; Chazdon, R. ; Nelson, B. W. ; Cesar, R. ; Meli, P. ; Gorgens, E. ; Duarte, M. M. ; Valbuena, R. ; Moreno, V. ; Mendes, A. F. ; Amazonas, N. T. ; Goncalves, N. ; Silva, C. A. ; Schietti, J. ; Brancalion, P. H. S. The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, v. 438, p. 34-43, 2019. https://doi.org/10.1016/j.foreco.2019.02.002

37. Rex, F. ; Corte, Ana Paula Dalla ; Sanquetta, C. R. ; Machado, S. A. ; Silva, C. A. Estimativa de Biomassa Aérea de Araucaria angustifolia (Bertol.) Kuntze POR DADOS LiDAR. Floram, 2019. https://floram.org/journal/floram/article/doi/10.1590/2179-8087.110717

36. Guerra-Hernández, J., Cozensa, D., Cardil, A., Silva, C.A., Botequim, B., Soares, P., Silva, M. González-Ferreiro, E. Díaz-Varela, R. A. Predicting Growing Stock Volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data. Forests. 2019. https://doi.org/10.3390/f10100905

35. Papa, D., Almeida, D., Estraviz, L.C., Valbuena. R., Silva, C.A. et al. Evaluating tropical forest classification and field sampling stratification from lidar to reduce effort and enable landscape monitoring. Forest Ecology and Management. 2019. https://doi.org/10.1016/j.foreco.2019.117634

34. Almeida. D., Stark, S., Valbuena, R., Broadbent, E., Silva, T., Resende, A., Ferreira, M., Cardil, A., Silva, C.A., Amazonas, N., Zambranoi, A., Brancalion. P. A new era in forest restoration monitoring. Restoration Ecology. 2019 https://doi.org/10.1111/rec.13067

2018

33. Silva, C. A.; Saatchi, S. ; Alonso, M. G. ; Labriere, N. ; Klauberg, C. ; Ferraz, A. ; Meyer, V. ; Jeffery, K. J. ; Abernethy, K. ; White, L. ; Zhao, K. ; Lewis, S. L. ; Hudak, A. T. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, p. 1-15, 2018. https://doi.org/10.1109/JSTARS.2018.2816962

32. Klauberg, C. ; Hudak, A. ; Bright, B. C. ; Boschetti, L. ; Dickinson, M. ; Kremens, R. ; Silva, C. A. Use of ordinary kriging and Gaussian conditional simulation to interpolate airborne fire radiative energy density estimates. International Journal of Wildland Fire, v. 27, p. 228, 2018. https://doi.org/10.1071/WF17113

31. Hentz, A. M. K. ; Silva, C. A. ; Corte, A. P. D. ; Netto, S. P. ; Strager, M. P. ; Klauberg, C. Estimating forest uniformity in Eucalyptus spp. and Pinus taeda L. stands using field measurements and structure from motion point clouds generated from unmanned aerial vehicle (UAV) data collection. Forest Systems, v. 27, p. e005, 2018. https://revistas.inia.es/index.php/fs/article/view/11713

30. Qu, Y. ; Shaker, A. ; Silva, C. A. ; Klauberg, C. ; Pinage, E. R. Remote Sensing of Leaf Area Index from LiDAR Height Percentile Metrics and Comparison with MODIS Product in a Selectively Logged Tropical Forest Area in Eastern Amazonia. Remote Sensing, v. 10, p. 970, 2018. https://doi.org/10.3390/rs10060970

29. Ferraz, A. ; Saatchi, S. ; Xu, L. ; Hagen, S. ; Chave, J. ; Yu, Y. ; Meyer, V. ; Alonso, M. G. ; Silva, C.A ; Roswintiart, O. ; Samboko, A. ; Sist, P. ; Walker, S. ; Pearson, T. ; Wijaya, A. ; Sullivan, F. ; Rutishauser, E. ; Hoekman, D. ; Ganguly, S. Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environmental Research Letters, v. 1, p. 1, 2018. https://iopscience.iop.org/article/10.1088/1748-9326/aad782/pdf

28. Silva, C.A; Klauberg, C. ; Hudak, Andrew T. ; Vierling, L. A. ; Liesenberg, V. ; Bernett, L. G. ; Scheraiber, C. ; Schoeninger, E. Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne LiDAR and k-Nearest Neighbor Imputation. Anais Da Academia Brasileira de Ciências, v. 90, p. 295-309, 2018. https://www.scielo.br/j/aabc/a/JjVJzFxjcyMWyQxRrbyCbjR/?lang=en

27. Huo, L. ; Silva, C. A. ; Klauberg, C. ; Mohan, M. ; Zhao, L. ; Tang, P. ; Hudak, A. T. Supervised spatial classification of multispectral LiDAR data in urban areas. PLOS One, v. 13, p. e0206185, 2018. https://doi.org/10.1371/journal.pone.0206185

26. Jaafar, W. S. W. M. ; Woodhouse, I. H. ; Silva, C. A. ; Omar, H. ; Maulud, K. N. A. ; Hudak, Andrew T. ; Klauberg, C. ; Cardil, A. ; Mohan, M. Improving Individual Tree Crown Delineation and Attributes Estimation of Tropical Forests Using Airborne LiDAR Data. Forests, v. 9, p. 759, 2018. https://doi.org/10.3390/f9120759

25. Silva, C. A.; Klauberg, C. ; Hentz, A. M. K. ; Corte, A. P. D. ; Ribeiro, U. ; Liesenberg, V.Comparing the Performance of Ground Filtering Algorithms for Terrain Modeling in a Forest Environment Using Airborne LiDAR Data. Floram, v. 25, p. 2-10, 2018. https://www.scielo.br/j/floram/a/P7z7RW6v6hp4jm4wk7m7vzt/?lang=en

2017

24. Ruza, M. S. ; Corte, A. P. D. ; Hentz, A. M. K. ; Sanquetta, C. R. ; Silva, C. A. ; Schoeninger, E. R. Inventário de Sobrevivência de povoamento de Eucalyptus com uso de Redes Neurais Artificiais em Fotografias obtidas por VANTs. Advances in Forestry Science, v. 4, p. 83-88, 2017. https://periodicoscientificos.ufmt.br/ojs/index.php/afor/article/view/4169

23. Alonso, M. G. ; Saatchi, S. ; Ferraz, A. ; Silva, C. A. ; Ustin, S. ; Koltunov, A. ; Balzter, H. Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR. Carbon Balance and Management, v. 12, p. 4, 2017. https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-017-0073-1

22. Jaafar, W. S. W. M. ; Woodhouse, I. H. ; Silva, C. A. ; Omar, H. Modelling individual tree aboveground biomass using discrete return LiDAR in lowland dipterocarp forest of Malaysia. Journal of Tropical Forest Science, v. 29, p. 465-484, 2017.

21. Silva, L. G. ; Silva, C. A. ; Klauberg, C. ; Mello, J. M. Detecção de árvores individuais em área florestal mista de coníferas por meio de dados LiDAR aerotransportando. Advances in Forestry Science, v. 4, p. 1, 2017. https://periodicoscientificos.ufmt.br/ojs/index.php/afor/article/view/4067

20. Silva, C. A.; Carine Klauberg ; Hudak, Andrew T. ; Vierling, Lee A. ; Fennema, S. ; Corte, A. P. D. Modeling and mapping basal area of Pinus taeda L. plantation using airborne LiDAR data. Anais da Academia Brasileira de Ciências, v. 89, p. 1895-1905, 2017. https://www.scielo.br/j/aabc/a/4DNkDcvfdXtVJCHppKwZ3Tm/?lang=en

19. Madi, J. P. S. ; Vendruscolo, D. G. S. ; Silva, C. A. ; Lima, M. P. ; Carvalho, S. P. C. Univariate models to represent the diametric distribution of thinned stand of Tectona grandis Linn.F. Advances in Forestry Science, v. 4, p. 119-123, 2017. https://periodicoscientificos.ufmt.br/ojs/index.php/afor/article/view/4726

18. Silva, C. A.; Klauberg, C. ; Hudak, Andrew T. ; Vierling, L. A. ; Jaafar, W. S. W. M. ; Mohan, M. ; Alonso, M. G. ; Ferraz, A. ; Saatchi, S. ; Cardil, A. Predicting Stem Total and Assortment Volumes in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning Data and Random Forest. Forests, v. 8, p. 254-271, 2017. https://doi.org/10.3390/f8070254

17. Klauberg, C. ; Vidal. E. J ; Silva, C. A. ; Hudak, Andrew T. ; Oliveira, M. ; Higuchi, P.Short-Term Effects of Reduced-Impact Logging on Copaifera spp. (Fabaceae) Regeneration in Eastern Amazon. Forests, v. 8, p. 257-270, 2017. https://doi.org/10.3390/f8070257

16. Mohan, M. ; Silva, C. A. ; Klauberg, C. ; Jat, P. ; Catts, G. ; Cardil, A. ; Hudak, A. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests, v. 8, p. 340-357, 2017. https://doi.org/10.3390/f8090340

15. Silva, C. A.; Hudak, Andrew T. ; Vierling, L. A. ; Klauberg, C. ; Alonso, M. G. ; Ferraz, A. ; Keller, M. ; Eitel, J. ; Saatchi, S. Impacts of Airborne Lidar Pulse Density on Estimating Biomass Stocks and Changes in a Selectively Logged Tropical Forest. Remote Sensing, v. 9, p. 1068-1087, 2017. https://doi.org/10.3390/rs9101068

14. Silva, C.A; Klauberg, C; Hentz, Â; Carvalho, S; Corte, A. Predição da biomassa aérea em plantações de Pinus taeda L. por meio de dados LiDAR aerotransportado. Scientia Forestalis, v. 45, p. 527-539, 2017. https://www.ipef.br/publicacoes/scientia/nr115/cap10.pdf

13. Silva, C. A.; Klauberg, Carine ; Mendonça, Bruno Araujo Furtado De ; Carvalho, Samuel Padua Chaves E . Efeito da densidade de pontos LiDAR na predição da altura em plantações de Pinus taeda L.. Scientia Forestalis, v. 45, p. 481-492, 2017. https://www.ipef.br/publicacoes/scientia/nr115/cap06.pdf

12. Silva, C. A.; Hudak, A. ; Klauberg, C. ; Vierling, L. A. ; Gonzalez-Benecke, C. A. ; Carvalho, S. P. C. ; Rodriguez, L. C. E. ; Cardil, A. Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data. Carbon Balance and Management, v. 12, p. 2-16, 2017. https://cbmjournal.biomedcentral.com/articles/10.1186/s13021-017-0081-1

2016

11. Silva, C. A.; Klauberg, Carine ; Hudak, Andrew T. ; Vierling, Lee A. ; Liesenberg, Veraldo ; Carvalho, Samuel P. C. E ; Rodriguez, Luiz C. E. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. Forestry, v. 89, p. cpw016, 2016. https://doi.org/10.1093/forestry/cpw016

10. Silva, C. A.; Hudak, A. ; Vierling, L. A. ; Loudermilk, L. ; O'brien, J. J. ; Hiers, J. ; Jack, S. B. ; Gonzalez-Benecke, C. A. ; Lee, H. ; Falkowski, M. J. ; Khosravipour, A. Imputation of Individual Longleaf Pine ( Mill.) Tree Attributes from Field and LiDAR Data. Canadian Journal of Remote Sensing, p. 00-15, 2016. https://doi.org/10.1080/07038992.2016.1196582

9. Klauberg, C. ; Vidal. E. J ; Silva, C.A ; Bentes, M. M. ; Hudak, A.Sampling methods for titica vine (Heteropsis spp.) inventory in a tropical forest. Annals of Forest Science, v. 4, p. 1-8, 2016. https://doi.org/10.1007/s13595-016-0565-2

8. Klauberg, C. ; Silva, C.A ; Lima, M. P. ; Carvalho, S. P. C.Panorama mundial sobre publicações técnico-científicas abordando Produtos Florestais Não Madeireiros nas duas últimas décadas. Advances in Forestry Science, v. 3, p. 29-37, 2016. https://periodicoscientificos.ufmt.br/ojs/index.php/afor/article/view/3430

7. Hudak, A. ; Bright, B. C. ; Pokswinski, S. M. ; Loudermilk, E. L. ; O?Brien, J. J. ; Hornsby, B. S. ; Klauberg, C. ; Silva, C.A . Mapping Forest Structure and Composition from Low-Density LiDAR for Informed Forest, Fuel, and Fire Management at Eglin Air Force Base, Florida, USA. Canadian Journal of Remote Sensing, v. 42, p. 411-427, 2016. https://doi.org/10.1080/07038992.2016.1217482

6. Ferraz, A. ; Saatch, S. ; Mallet, C. ; Jacquemoud, S. ; Goncalves, G. ; Silva, C.A ; Soares, P. ; Tome, M. ; Pereira, L. Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory. Remote Sensing, v. 8, p. 653, 2016. https://doi.org/10.3390/rs8080653

2015

5. Silva, C.A; Klauberg, C. ; Carvalho, S. P. C. ; Piccolo, M. C. ; Rodriguez, L. C. E.Estoque de carbono na biomassa área florestal em plantações comerciais de Eucalyptus spp. Scientia Forestalis, v. 43, p. 301-309, 2015. https://www.ipef.br/publicacoes/scientia/nr105/cap13.pdf

4. Gorgens, E. ; Rodriguez, L. C. E. ; Silva, A. G. P. ; Silva, C.A . Identificação De Árvores Individuais A Partir De Levantamentos Laser Aerotransportado Por Meio De Janela Inversa. Cerne, v. 21, p. 91-96, 2015. https://www.scielo.br/j/cerne/a/DhM3dMZkYfSJQZGtKFLtBNM/?lang=pt

3. Carvalho, S. P. C. ; Rodriguez, L.C.E. ; Silva, L.D. ; Carvalho, L.M.T. ; Calegario, N. ; Lima, M. P. ; Silva, C.A ; Mendonca, A. R. ; Nicoletti, M. F. . Predição do volume de árvores integrando Lidar e Geoestatística. Scientia Forestalis, v. 43, p. 627-637, 2015. https://www.ipef.br/publicacoes/scientia/nr107/cap14.pdf

2014

2. Silva, C. A.; Klauberg, C. ; Carvalho, S. P. C. ; Hudak, A. ; Rodriguez, L. C. E. . Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of São Paulo, Brazil. Scientia Forestalis, v. 42, p. 591-604, 2014. https://www.fs.usda.gov/treesearch/pubs/48607

1. Carvalho, S. P. C. ; Rodriguez, L. C. E. ; Calegario, N. ; Savian, T. V. ; Lima, M. P. ; Silva, C. A. ; Mendonca, A. R. ; Nicoletti, M. F. . Modelagem não linear mista para descrever o afilamento de árvores clonais de Eucalyptus sp. Scientia Forestalis, v. 42, p. 605, 2014. https://www.ipef.br/publicacoes/scientia/nr104/cap14.pdf